

TEST SUMMARY

Rendered to:

FORTRESS RAILING PRODUCTS 1720 North 1st Street Garland, Texas 75040

Project No.: F5647.01-119-19

Test Dates: 04/04/16

Through: 04/07/16

Test Summary Date: 05/26/16

Product: 8 ft by 42 in Al¹³ Traditional Aluminum Railing

Scope: Architectural Testing, Inc., an Intertek company ("Intertek-ATI") recently conducted structural performance tests on the Al^{13} Traditional Aluminum Railing with Al^{13} Evolve External Brackets and Al^{13} Evolve P2 Brackets in a level (in-line) configuration. The guardrail systems had an overall top rail length (inside of post to inside of post) of 93-1/8 in and 93-5/8 in with an overall rail height (top of top rail to bottom of bottom rail) of 40 in. Top and bottom rails attached to a 3 in square aluminum post mount (Al^{13}) on one end and a conventional 4x4 wood post on the other end via Al^{13} Evolve External brackets and Al^{13} Evolve P2 brackets. Testing was performed in accordance with Section 4.2.1 of ICC-ESTM AC273 (March 1, 2008 - Editorial Revised February 2014), Acceptance Criteria for Handrails and Guards.

Limitations: Materials used for testing were not sampled in accordance with Section 2.4 of ICC-ESTM AC273. Anchorage of support posts to the supporting structure is not included in the scope of this testing and would need to be evaluated separately.

Test Results Summary Table:

Test	Target Load	Result	
		Al ¹³ Evolve External Bracket	Al ¹³ Evolve P2 Bracket
Infill Load at Center of Two Balusters	2.5 x Design Load (125 lb)	Held in excess of one minute (PASS)	
Uniform Load on Top Rail (45° from Horizontal)	2.5 x 50 plf Design Load (975 lb / 970 lb)	Held in excess of one minute (PASS)	
Concentrated Load at Midspan of Top Rail	Design Load (200 lb)	1.21 in Avg Net Deflection vs. 2.73 in Deflection Allowed (PASS)	1.13 in Avg Net Deflection vs. 2.72 in Deflection Allowed (PASS)
	2.5 x Design Load (500 lb)	Held in excess of one minute (PASS)	
Concentrated Load at Both Ends of Top Rail (Brackets) ¹	2.5 x Design Load x 2 (1000 lb)	Held in excess of one minute (PASS)	
Concentrated Load at Top of Post Mount (42 in High)	2.5 x Design Load (500 lb) ²	Held in excess of one minute (PASS)	
	Average Ultimate Load	685 lb	

¹ Load was imposed on both ends of rail using a spreader beam; therefore, loads were doubled.

² Reference Intertek-ATI Report No. B7787.01-119-19.